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Three-dimensional eddy structure in
a cylindrical container

By P. N. SHANKAR

CTFD Division, National Aerospace Laboratories, Bangalore 560017, India

(Received 12 March 1996 and in revised form 31 January 1997)

We consider Stokes flow in a cylindrical container of circular section induced by the
uniform translatory motion of one of the endwalls. This flow field is of interest because
it is possible to get reliable analytical descriptions of important three-dimensional
structures such as the primary and corner eddies. It is shown, using a result of Tran-
Cong & Blake, that separable solutions exist which can be combined to yield vector
eigenfunctions that satisfy the sidewall boundary conditions provided the eigenvalues
satisfy the transcendental equation
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The eigenstructure in the complex plane is somewhat unusual because the eigenvalues
form two distinct sequences: a real-sequence ²λ

n
´ and a complex sequence ²µ

n
´, both

of which need to be used to satisfy the top and bottom boundary conditions. The
complex eigenvalue with the smallest real part, approximately 2±5681±123i,
determines the spacing and decay of the intensity of the primary eddies in deep
containers.

The above vector eigenfunctions are first combined, using a least-squares procedure,
to determine the flow field in a container of infinite height. It is found, as in the
corresponding two-dimensional case, that there is an infinite number of almost equally
spaced counter-rotating primary eddies spaced about 2±8 container radii apart. For
containers of finite height the number of primary eddies depends on the height of the
container; computations show that for container heights of 1 and 2 (based on the
radius) there is a single primary eddy while there are two and four respectively for
heights of 4 and 10. More interestingly, the corner eddies in the plane of symmetry,
rather than being made up of closed streamlines, consist of streamlines that connect the
two foci at opposite corners in the plane of symmetry. Detailed three-dimensional
streamline plots show that away from this plane the flow is almost entirely azimuthal
in the corner, a result that would not be evident from two-dimensional results. Other
interesting three-dimensional features of the eddy structure are also found.

Finally, the growth and merger of the corner eddy as the container height h is
increased beyond 3 is studied carefully. Among a number of interesting features, it is
found that at some stage streamlines cease to flow into the focus in the centreplane and
start, rather, to stream out, resulting in a growing limit surface in the eddy. First,
contact between the limit surfaces on opposite sides of the eddy in the symmetry plane,
with local flow from one focus to the other, takes place (hD 3±161) before the eddy is
fully developed. Full merger then takes place when hD 3±235 following which the
merged eddy gives way to the second primary eddy. We find the corner eddy structure
to be quite complicated during the merger process ; three-dimensional streamline plots
show intricate and rather beautiful patterns in the flow field.
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F 1. The geometry of the flow field considered.

1. Introduction

Although a very large number of papers have appeared and continue to appear on
the two-dimensional flow in a cavity generated by the motion of one of the walls, very
few have appeared on the corresponding three-dimensional problem. The few that
have, for example Iwatsu et al. (1989), Verstappen & Veldman (1994), Zang, Street &
Koseff (1994) and Deshpande & Shankar (1994), have invariably used direct computa-
tional methods to study these complex flow fields. While computational methods are
powerful in their ability to handle complex geometries and the difficulties posed by
nonlinearity, there are certain features of these flow fields that cannot, at present, be
studied by these techniques. For example, the nature of the fields in deep cavities and
the structure of delicate corner eddies cannot be examined by these methods. These
require the use of analytical tools in a simple setting in order to be unambiguously
resolved. The purpose of the present work is to study a three-dimensional recirculating
flow in a convenient geometry with the aim of shedding light on certain canonical
features of these flows.

We wish to analyse, with the above aim in mind, Stokes flow in a cylindrical
container of circular section generated by the motion of one of the end plates of the
container. The geometry is shown in figure 1, where the bottom of the container moves
in the θ¯ 0 direction. If all velocities are normalized by the linear speed of the bottom
wall, all lengths by R, the radius of the container, and the pressure suitably, the
governing equations are

¡[u¯ 0, ¡p¯~#u,

The velocity u has to vanish on the cylindrical sidewall of the container and on the
top, and satisfy the no-slip condition on the bottom. Of particular interest are the
primary eddies and their dependence on the non-dimensional height h of the container,
and the structure of the corner eddies located near the top corner of the container. We
will show that this simple-looking flow field is rich in fluid mechanical detail.

2. Analysis

We wish to analyse the flow field in the container using an eigenfunction expansion.
It proves to be convenient to use a general result of Tran-Cong & Blake (1982). They
show that if B and B

!
are vector and scalar fields satisfying Laplace’s equation, i.e.

~#B¯ 0 and ~#B
!
¯ 0, then the velocity field

�¯¡(r[BB
!
)®2B (1)
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F 2. The first five eigenvalues for m¯ 1, 3 and 5: (a) the real eigenvalues and (b) the
complex ones. *, m¯ 1; ^, m¯ 3; t, m¯ 5.

will be solenoidal and satisfy Stokes’ equation. Since separable solutions to the scalar
Laplace equation are easily obtained, we need only to find solutions to the vector
Laplace equation in cylindrical coordinates.

For the flow field in the geometry considered here, it is natural to look for separable
solutions of the form f(r) eimθ+kz. For the required scalar field B

!
, f(r) is simply J

m
(kr).

We then need two vector fields B
"

and B
#

which satisfy the vector Laplace equation.
Using the results given in Morse & Feshbach (1953, p. 1797) one can write down the
following forms for the vector fields :
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It will be convenient now to make use of the fact that, when the flow is driven by the
uniform movement of the bottom wall in the θ¯ 0 direction, the field will be
symmetrical about the plane θ¯ 0. Doing this, if we now utilize the fields B

!
, B

"
and

B
#
in the ratios 1:b :c, formula (1) yields a candidate velocity field whose components

are given by
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In order to save space, the argument of the Bessel functions, kr, has been dropped in
the above equations.

The boundary conditions require that all the three components of the velocity vanish
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F 3. The shapes of the components of the vector eigenfunctions p
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(r) and q
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(r) for m¯ 1
and n¯ 1 and 5.

n λ
"n

µ
"n

1 5±317 2±5681±123i
2 8±533 6±0041±608i
3 11±70 9±2321±817i
4 14±86 12±421±961i
5 18±02 15±592±073i
6 21±16 18±752±163i
7 24±31 21±902±240i
8 27±46 25±052±307i
9 30±60 28±202±366i

10 33±75 31±352±418i

T 1. The first ten real and complex eigenvalues λ
"n

and µ
"n

on r¯ 1. This requirement leads to an eigenvalue problem for the exponent k. It is easy
to show that k has to satisfy the transcendental equation
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(4)

If k* satisfies (4) the components given in (3) yield a vector eigenfunction provided the
constants b and c take the values
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To the best of our knowledge the equation determining the eigenvalues, equation (4),
does not seem to have appeared in the fluid mechanical literature before. However, a
referee has pointed out that Dougall (1913) derived a similar equation when
considering the equilibrium of an elastic rod of circular section. Based on what is
known from the two-dimensional cavity problem, we expect to find infinite sequences
of complex eigenvalues for each m ; for deep cavities then the eddy structure would be
determined by the eigenvalue with the smallest real part. What we actually find is a
little more complicated: for each m there exists not only a complex sequence ²µ

mn
´ of

eigenvalues but also a real sequence ²λ
mn

´. This is illustrated in figure 2, which shows
the first five in each sequence, in the right half-plane, for m¯ 1, 3 and 5. For each m,
succeeding eigenvalues after the first shift to the right while the imaginary part
increases slightly for the complex sequences; with increasing m, the first eigenvalues of
the sequences, λ

m"
and µ

m"
, shift to the right. For each m the difference between the

real parts of consecutive eigenvalues, i.e. (µr
mn+"

®µr
mn

) and (λ
mn+"

®λ
mn

), decreases
and seems to tend to π as nU¢.

The actual computation of the eigenvalues was done using Newton’s method. As in
all cases involving complex roots, the principle of the argument has to be used to ensure
that all the roots in a given part of the complex plane have been found. Table 1 lists
the first ten real and complex eigenvalues for m¯ 1 correct to four significant figures
only for clarity. In the computation of the field, roots correct to at least 12 digits were
used (Shankar 1996 gives detailed tables of the eigenvalues). The 1st and 5th
eigenfunctions for the m¯ 1 case are displayed in figure 3. As one would expect, as n
increases the functions increasingly oscillate between 0 and 1.

In order to be able to use these eigenfunctions in an expansion procedure for our
problem it is important that certain symmetries exist. It is easy to show from (4) that
if λ and µ are eigenvalues, then so are ®λ, ®µ and µ- . Thus there is the possibility of
expanding real functions in terms of these and of handling both the top and bottom
boundary conditions.

Let

p
mn

(r)¯ (p"
mn

(r), p#
mn

(r), p$
mn

(r)) and q
mn

(r)¯ (q"
mn

(r), q#
mn

(r), q$
mn

(r))

be the vector eigenfunctions corresponding to λ
mn

and µ
mn

respectively. Then, in
general, we can attempt to expand the velocity field u(r, θ, z) in the following manner :

u
r
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It may be noted that eigenvalues from both halves of the complex plane are used;
further that the negative signs in (6c) are needed because the changes λU®λ and
µU®µ require that (p", p#, p$)U (p", p#,®p$) and (q", q#, q$)U (q", q#,®q$) respectively.

Considerable simplification can now be achieved by qualitative use of the boundary
conditions. Whereas u¯0 at z¯ h, at z¯ 0 we require u to equal U

!
¯ (cos θ,

®sin θ, 0). Now the orthogonality of the trigonometric functions implies that
a
mn

¯ b
mn

¯ c
mn

¯ d
mn

¯ 0 if m1 1, i.e. we need m¯ 1 alone for these boundary
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conditions. Thus only the terms involving the first harmonic in θ need be retained. In
all of the following the first subscript will be dropped with the understanding that
m¯ 1. The velocity field then has the representation

u¯3
n
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a
n
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sin θ p#
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n
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n
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. (7)

The coefficients a
n
, b

n
, c

n
and d

n
are now determined, as in the two-dimensional case

(Shankar 1993), by a least-squares procedure. Taking N terms in the sum in (7) and
I points on (0, 1), let e#

"
, e#

#
,… , e#

'
be the sums of the total errors squared in the satis-

faction of the six boundary conditions at the chosen I points. Then consider
E #

T
¯ e#

"
e#

#
…e#

'
. The 6N real constants to be found can now be determined by

solving the 6N linear equations resulting from the minimization of E #
T

with respect to
the coefficients. Computations using N¯ 10, 20, 40 and 60 showed that the coefficients
converge rapidly.

A technical point to be noted, though minor from a practical point of view, is that
the boundary conditions on u

r
and uθ change discontinuously at r¯ 1 at the bottom

of the container. For the two-dimensional case this discontinuity has been found not
to significantly affect the field away from the singular edges (Srinivasan 1995). We have
assumed that this holds in the present case too; however, in the minimization
procedure we have ensured that the last minimization point is ε (ε1 0) away from
r¯ 1. Thus the minimization points are equally spaced from (1®ε)}I to 1®ε. There
is no unique value for I ; for all the calculations reported here I¯ 3N with N¯ 100 and
ε¯ 0±02.

Before discussing the results some indication will now be given of the order of
magnitude of the errors made in the satisfaction of the boundary conditions at the
bottom and top of the container. These errors will naturally be largest near r¯ 1 where
the discontinuities occur and so we shall concentrate our attention on this
neighbourhood. The three components of velocity at z¯ 0 and z¯ 1, the top for a
container of unit height, are shown in figure 4 on the interval 0±85! r! 0±99 with a
change of scale at r¯ 0±95 in order to accommodate the larger errors near r¯ 1. On
z¯ 0 the errors in u

r
begin to build up earliest around r¯ 0±9, being oscillatory

initially, but around r¯ 0±98 both u
r
and uθ monotonically decay to their boundary

value of zero. On the other hand the error in u
z
builds up much later, around 0±985,

before decaying to the boundary value. On the top wall the errors are of the order of
10−) or better until r¯ 0±98 guaranteeing that the corner eddies will be captured
accurately. It should be pointed out that in figure 4 the errors are shown at non-
minimization points, i.e. where the errors will, generally, be larger, and also that the
errors are actually smaller for larger container heights.

It may be mentioned here that two types of procedures were employed to make sure
that the computations were, mathematical questions of convergence and completeness
apart, as reliable and accurate as possible. First, N was increased from 60 to as much
as 500 in special cases to check that the expansion coefficients were ‘converging’ and
to check that the major features of the field were unaffected by increasing N. Secondly,
to make sure that round-off was not a problem at high N, quadruple-precision
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arithmetic was employed in special cases as a check. No inconsistencies or ambiguities
were detected. We observe that in order to resolve the corner eddies to increasing
detail, N has to be increased (and ε decreased) so that the top boundary conditions,
especially near the corner, are satisfied to sufficient accuracy.

3. The field in a container of infinite height

We begin, in order to simplify matters, by considering a container of infinite height,
i.e. h¯¢. In the corresponding two-dimensional case (Shankar 1993) it is known that
the flow field consists of an infinite number of almost equally spaced counter-rotating
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F 5. The eddy structure in a container of infinite height. Streamlines in one half of the
plane of symmetry θ¯ 0 are shown.

n a
n

b
n

1 ®0±1308 ®0±2980®0±1122¬10i
2 0±6063¬10−" 0±5842¬10−"0±4046i
3 ®0±3621¬10−" ®0±9828¬10−#®0±2652i
4 0±2458¬10−" ®0±4346¬10−#0±1974i
5 ®0±1803¬10−" 0±9485¬10−#®0±1570i
6 0±1391¬10−" ®0±1147¬10−"0±1302i
7 ®0±1114¬10−" 0±1218¬10−"®0±1112i
8 0±9159¬10−# ®0±1232¬10−"0±9691¬10−"i
9 ®0±7691¬10−# 0±1221¬10−"®0±8584¬10−"i

10 0±6566¬10−# ®0±1199¬10−"0±7699¬10−"i

T 2. The first ten coefficient a
"
, b

"
,… , a

"!
, b

"!
for the cavity of infinite depth

eddies. The fact that a sequence of complex eigenvalues ²µ
n
´ exists in the present case

suggests that the situation will be similar here. It is required now to drop the terms
involving the eigenvalues with positive real part in (7) and so the simpler representation

u¯3
n
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B

a
n

E

F

sin θ p#
n

cos θ p"
n

®cos θ p$
n
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H
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E

F

sin θ q#
n

cos θ q"
n
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n
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H

e−µ
nz
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C

D

(8)

is sufficient. Thus if N terms are retained only 3N real constants need to be solved for.
The first ten coefficients for this case are listed in table 2; although all computations

have been carried out using double-precision arithmetic and are correct to a much
larger number of places, only the first few significant digits are listed here for clarity.
It may be noted from this table that, as in the two-dimensional case, the coefficients
decay slowly and alternate in sign. Surprisingly, however, just 20 terms usually suffice
to give a good picture of the flow field; this is because as z increases the first few
eigenvalues, with smaller real part, dominate.
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h 1st 2nd 3rd 4th 5th

1 0±3121 — — — —
2 0±3999 — — — —
4 0±4012 3±1653 — — —

10 0±4012 3±1992 5±9977 8±7888 —
¢ 0±4012 3±1992 5±9977 8±7961 11±5946

T 3. The locations of the centres of the primary eddies in the plane θ¯ 0 for various cylinder
heights. The numbers indicate the z coordinate

The streamlines in the plane of symmetry θ¯ 0 are shown in figure 5. As expected
from the nature of the eigenvalues and by analogy with the two-dimensional situation,
the flow field consists of an infinite sequence of counter-rotating eddies. Although this
is generally not true in three dimensions, the streamlines are closed curves ; this is a
consequence of the fact that for Stokes flow the field has to be symmetric about the
θ¯π}2 plane. Although one cannot tell from the symmetry-plane picture alone, it
appears that the eddies are separate and distinct. This will be discussed in more detail
later.

The approximate locations of the eddy centres in the symmetry plane are listed in
table 3. It may be noted that the spacing between successive centres settles to a value
of about 2±799. Referring to table 1, the imaginary part of the dominant eigenvalue is
about 1±1226; this would imply a spacing of about π}1±1226D 2±798, in agreement
with what is found.

The three-dimensional nature of the eddies away from the symmetry plane will be
discussed later when we deal with containers of finite height.

4. The overall eddy structure in containers of finite height

When h is finite all 6N real coefficients have to be solved for as the exponents with
positive real part have now to be retained. As may be expected, it is found that as h
increases c

n
and d

n
decrease while a

n
and b

n
tend to the values given in table 2 for the

h¯¢ case.
The streamline patterns in the symmetry plane θ¯ 0 are shown in figure 6. For both

the cases h¯ 1 and h¯ 2 the primary flow consists of a single recirculating eddy; there
are two counter-rotating primary eddies when h¯ 4 and four primary eddies when
h¯ 10. The corner eddies can be seen for the two shorter containers ; they also exist for
the other two cases also but are not resolved with the coarse grid used to generate these
pictures. The locations of the centres of the primary eddies in the plane θ¯ 0 are listed
in table 3. Note that the spacing quickly settles to its asymptotic value of about 2±8.

The nature of the corner eddy in the plane θ¯ 0 can be better understood from
figure 7 (a) which shows the corner region for h¯ 2. Unlike the situation in the two-
dimensional case where the eddy is made up of closed streamlines, the streamlines
forming the corner eddy here come from the other corner in the same plane at θ¯π ;
this can be seen from figure 7(b). The streamlines converge to and meet at a focus,
which we shall call the centre of the corner eddy in the symmetry plane; this is a
typically three-dimensional feature in the flow field. The eddy centre is a stagnation
point and one would expect the flow to be azimuthal in this neighbourhood in nearby
adjacent planes. A matter of some interest is the nature of the ‘separation streamline’
in the plane of symmetry. Figure 7(b) shows the separation streamline s

"
and two
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F 6. Streamlines in the plane θ¯ 0 for containers of height 1, 2, 4 and 10. Only a half of
the symmetry plane is shown in each case.

nearby streamlines, s
#

which is part of the primary eddy and s
$

which is part of the
corner eddy. As figures 7(a) and 7(b) show, the separation streamline starts from a
point about 0±2 away from the cylindrical sidewall on the plane z¯ h at θ¯π, moves
down the container, turns near the bottom, moves to the centreline and then traces a
symmetrical path to the top of the container. The ‘corner eddy’, which lies between this
and the container surface, thus occupies a significant portion of the container even far
from the corner. This is totally different from the analogous two-dimensional field
where the corner eddy is actually confined to the corner ! The locations of the (first)
corner eddy centres and the widths of these eddies along the top of the container in the
plane θ¯ 0 for various cavity heights are given in table 4. An interesting question that
comes to mind is whether, as in the two-dimensional case (Moffatt 1964), the corner
eddies form an infinite sequence of decreasing size and intensity. This question will be
discussed a little later.

For a complex three-dimensional flow, even for one with as much symmetry as the
one considered here, three-dimensional streamline plots are essential to get a complete
picture of the field. Since the flow is steady, streamlines can be found by releasing
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F 7. (a) A close-up of the corner eddy in the symmetry plane θ¯ 0, showing the separation
streamline s

"
. (b) The separation streamline and two nearby streamlines in the plane θ¯ 0. The inset

shows that the streamlines that make up the corner eddy connect the two foci. h¯ 2.

imaginary tracer particles in the field and tracking their paths by integrating the
equations of motion. The streamlines displayed here were obtained using a commercial
software package called CFD-VIEW with the computed velocity field as input. Two
views of the same three-dimensional streamlines are shown in figure 8 for a container
of height 2. Streamlines s

"
and s

#
loop around the curved line (not shown) that forms

the centreline or stagnation line of the primary eddy. This line is located in the plane
θ¯π}2. Next consider the streamline s

$
, which it should be made clear nowhere

intersects the plane θ¯ 0. It starts near the bottom, i.e. near the moving end plate, in
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F 8. Two views of three-dimensional streamlines in a container of height 2.
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F 9. Three streamlines that contribute to the primarily azimuthal flow in the corner eddy
away from the symmetry plane. h¯ 2.

h Location (r, z) Width

1 (0±984, 0±938) 0±116
2 (0±964, 1±900) 0±197
4 (0±983, 3±926) 0±138

10 (0±975, 9±913) 0±169

T 4. The location of the centre and the width of the corner eddy at the top
in the plane θ¯ 0

a plane slightly away from the symmetry plane, moves upwards into the corner eddy,
makes a single loop, then moves azimuthally until it reaches the neighbourhood of
θ¯π, makes another loop and goes back down to the neighbourhood of the moving
plate before following an almost straight trajectory back to the starting point. The
almost purely azimuthal motion, which can best be seen in figure 8(b), is somewhat
surprising; based on what is known of two-dimensional corner eddies, one might have
expected the streamline to show some spiralling motion. It now appears that away
from the plane θ¯ 0 the motion in the corner eddy is almost purely azimuthal with
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F 10. The centreline of the primary eddy in the plane θ¯π}2. h¯ 2.

fluid being fed from near the bottom of the container. This conclusion is strengthened
by the streamlines shown in figure 9. Since the primary eddy is three-dimensional, we
would expect its ‘centreline’, in the plane θ¯π}2, to be curved. We define the eddy
centre in this plane to be the location where uθ vanishes. Figure 10 shows the curved
centreline of the primary eddy: whereas the centre is about 0±4 above the bottom at
r¯ 0, it is only 0±26 above the bottom at the cylindrical wall. The curvature is
somewhat more than might have been expected.

A remark is appropriate now on a common feature of the streamlines in these flows.
One cannot in general expect streamlines to be closed in three-dimensional flows.
However, the Stokes flows considered here demand symmetry about the plane θ¯π}2.
Now streamlines which cut this plane twice have, by this symmetry, to be closed. Thus
all streamlines originating away from the plane θ¯ 0 are closed including ones that
make up the corner eddy. In the symmetry plane θ¯ 0, however, only the streamlines
that make up the primary eddy are closed. The other streamlines start from one focus
in the corner eddy and end up, in a symmetrical manner about θ¯π}2, at the other
focus. It may be recalled that in two dimensions the corner eddies are made up of closed
streamlines and are separated from the primary eddy by separation streamlines. The
corner eddies here are quite different both in the symmetry plane and away from it
where the azimuthal flow dominates.

Finally, we examine the nature of the interface between two primary eddies. Figure
11 shows three-dimensional streamline plots near such an interface for a container of
height 4. In this figure streamlines s

"
and s

#
are in the first primary eddy while s

$
–s

'
are

all in the second primary eddy. The latter streamlines clearly show the eddying motion
in the second primary eddy. Streamlines s

&
and s

'
approach s

"
and s

#
near the interface

as they lie in the same plane in that neighbourhood; whereas s
&

lies entirely in the
second primary eddy, s

'
takes part in the azimuthal motion near the top of the

container. Streamline plots such as this and others give strong support to the view that
the primary eddies are separated from one another by separation surfaces. However no
formal proof exists for this view.
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F 11. Three-dimensional streamline plots showing the second primary eddy and the
boundary between it and the primary eddy. h¯ 4.

5. Corner eddy merger and the evolution of the primary eddies

It is known from the considerable work done on the two-dimensional version of this
problem that, in two dimensions, there is an infinite sequence of eddies of decreasing
strength and size near each of the fixed corners (Moffatt 1964) ; moreover, that near
certain critical values of container height the primary corner eddies rather suddenly
increase in size with height and ultimately merge to generate a new primary eddy
(Shankar 1993). A natural question now is : what happens in this three-dimensional
geometry? Although we do not have, as yet, an equivalent to Moffatt’s result in three
dimensions, careful computations show that higher-order corner eddies do exist in this
geometry too. For example, figure 12 shows the centreplane flow field in a container
of height 3, most of which consists of a single primary eddy made up entirely of closed
streamlines. The corner eddies, the details of which are shown in parts (b) and (c), are
made up of streamlines that spiral into and out of foci. As pointed out earlier, the
streamlines that make up the first corner eddy in the plane θ¯ 0 connect the two foci
on either side of the plane θ¯π}2. In this particular case, since the first corner eddy
is already quite large, the second corner eddy, shown in figure 12(c), can be resolved
with just 100 eigenfunctions and accurately plotted with double the number and with
ε¯ 0±01. On the other hand, when h¯ 2 the primary corner eddy is still small and so
the second corner eddy is only poorly resolved with 200 eigenfunctions. For the
streamlines shown in figure 13(a), 500 eigenfunctions were used with ε¯ 0±004.
Another point of interest is that whereas the streamlines diverge from the focus of the
second corner eddy for h¯ 3 and h¯ 3±235 (shown in figure 13b), the streamlines
converge to the focus in the case h¯ 2.

In the two-dimensional cavity case, it was shown that around a critical depth of
about 1±62 cavity widths the corner eddies suddenly increased in size as the depth was
increased. This lead to the merger of the first corner eddies ; the merger then resulted
in the formation of the second primary eddy. In the three-dimensional geometry
considered here, it is known that for h¯ 3 there is only one primary eddy while there
are two for h¯ 4. We may therefore, in analogy with the two-dimensional case, expect
the first corner eddy to grow rapidly and merge around some height in the range
3! h! 4. This question will be examined now. Figure 14 shows the evolution of the
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F 12. (a) Streamlines in the symmetry plane for Stokes flow in a container of height 3. Note that
only half the plane is shown. The details of the first corner eddy are shown in (b) while those of the
second corner eddy are shown in (c).
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F 13. Details of the second corner eddies in the plane θ¯ 0. (a) h¯ 2±0, (b) h¯ 3±235.

corner eddy with height soon after h¯ 3. When h¯ 3±1 the streamlines converging to
the focus shown in figure 14(a) have come from the focus at θ¯π ; the width of the
eddy on the top of the container is about 0±54. With only a slight increase in height,
i.e. when h¯ 3±15, the field is significantly different. Streamlines from the other focus
continue to stream into this focus, but now instead of converging to the focus they
converge to a limit surface S

"
; meanwhile, streamlines now leave the focus and

converge from the inside to S
"
in the same direction as the external streamlines. Note

that in figure 14(b) the outgoing streamline has been terminated, for picture clarity,
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F 14. Growth and evolution of the first corner eddy, with increasing height, up to first contact
in the plane θ¯ 0 with 2±5% z% h. Note that only the first corner eddies are shown. (a) h¯ 3±1,
(b) h¯ 3±15, (c) h¯ 3±161.

before it reaches the limit surface. This intriguing behaviour must have started at a
smaller height with the limiting surface growing with h in a smooth manner.† The need
for this will become clear soon enough. Figure 14(c) shows that by the time h is 3±161,
S
"
has grown sufficiently to enable first contact to take place; now, all the streamlines

from the focus shown stream into the other focus through a narrow passage adjacent
to the lid and the limit surfaces are no longer there. We can now see why the limit
surface behaviour soon after h¯ 3±1 is necessary. If this had not occurred, it is clear
from figure 14(a) that at first contact the streamlines on either side of r¯ 0 would
produce a streamline in the main eddy and a streamline from the left focus to the right
focus, i.e. it would appear in the wrong direction. These difficulties are avoided by the
actually observed behaviour.

† A referee commented ‘‘ It is possible that the eddy-evolution mechanism discussed in §5 involves
a Hopf bifurcation: at a critical value h

c
of the height h, the stable focus at the first corner eddy evolves

into an unstable focus, via the formation of a stable limit cycle (‘ limit surface ’). These are the
characteristics of a Hopf bifurcation. It is interesting that the behaviour local to the eddy depends so
crucially on the ‘global ’ parameter h ’’. The referee further made the intriguing speculation that h

c

may equal π. Unfortunately, computations show that it is less than π.
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F 15. Three-dimensional streamlines in the corner eddy region for a container of height 3±15.
The same two streamlines s

"
and s
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are shown in both views of which (a) is in plan looking down on

z¯ h.
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F 16. The growth of the corner eddy as a function of container height. l
e
is the width of the eddy,

up to the point where the radial shear stress vanishes, at the top of the container in the plane θ¯ 0.

A natural question that arises is the behaviour of the flow away from the plane θ¯ 0
when a limit surface is present in the corner eddy. Is it really a surface as stated? Figure
15 seems to provide an answer in the affirmative: s

"
is a (closed) streamline that comes

from below on the right, makes a number of swirling clockwise loops about the core
of the corner eddy, crosses over to the other side, makes an equal number of clockwise
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F 17. Further evolution of the corner eddy after first contact.
(a) h¯ 3±2, (b) h¯ 3±235, (c) h¯ 3.3.

loops and then goes on down to the bottom of the container. On the other hand, s
#
is

a closed streamline that is confined entirely to the core region of the eddy at the top
of the container and generates horn-like surfaces, the outer parts of the horns being
bent back. If we examine figure 15(b), starting from the top of the horn close to the
plane θ¯ 0, we see that s

#
moves clockwise around the core and around its inner loop,

moving outwards to the limit surface S
"
(not shown), which separates it from s

"
. Then,

in the company of s
"
, it crosses over to the other side and makes a number of swirling

clockwise loops before falling inwards towards the core; now loops of smaller radii are
made as θ decreases, then it crosses back over to the other side, makes more loops on
the smaller radii, before expanding out to the outer horn. These streamline plots tie in
nicely with the impression that figure 14 gives of the conditions on the plane of
symmetry; together they show how far three-dimensional corner flows differ from their
two-dimensional counterparts. Finally, we observe that figure 15 implies the interesting
fact that there are two counterflowing azimuthal flows in the core of the eddy; looking
in plan, the inner flow is clockwise while the outer flow is anticlockwise.
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F 18. Final stages of transition of the first corner eddy into the second primary eddy.
(a) h¯ 3±4, (b) h¯ 3±45, (c) h¯ 3±5.

It may have been noted from figure 14 that not only is the ultimate growth of the
eddy to first contact very rapid but also that this occurs with very little change in
overall eddy size. Let us define 1®l

e
to be the radius at the top of the container where

the radial velocity just changes sign off the container; it is the position where the radial
shear stress vanishes. Figure 16 shows how l

e
, a measure of the width of the eddy in

the plane θ¯ 0 along the top of the container, changes with container height.
Interestingly, even at first contact, i.e. when hD 3±151, l

e
is only about 0±655 as can be

seen from figures 14 and 16.
The next stages of the merger process, soon after first contact, are shown in figure

17. When h¯ 3±2 the flow field is similar to that at h¯ 3±161 but now l
e
has increased

to about 0±756; this is accompanied by a general lifting-off or thickening of the merged
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F 19. Three-dimensional streamline patterns in the merged eddy region, h¯ 3±235. (a) Outer
streamlines, (b) a streamline which swirls about the core flow, (c) the three-dimensional cat’s eye.

portion of the eddy near r¯ 0. By the time h increases to 3±235 the merger is almost
complete with l

e
virtually equal to 1. This can be seen in figure 17(b), where there are

streamlines from the focus that turn through sharp angles close to r¯ 0. The net result
of the completion of merger is that the merged eddy is now surrounded by streamlines
that do not pass through either focus. This can be clearly seen in figure 17(c) which
shows two streamlines enclosing the merged eddies. It is these streamlines which will
form the second primary eddy.

It should be noted how different this scenario is from that found in two-dimensional
eddy merger (Shankar 1993, figure 7). In that case first contact and final merger took
place at the same time since there was no limit surface to contend with. The eddies
consisted of closed streamlines with no flow from one side to the other throughout the
merger process. It is somewhat surprising that three-dimensional effects are sufficiently
significant even in the plane of symmetry that qualitatively new effects are seen.

The final stages of eddy merger and the birth of the second primary eddy are shown
in figure 18. When h¯ 3±4, the merged eddy has now completely lifted off from the top
of the container and the second primary is now fully developed. The merged eddy now
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shrinks rapidly as seen in figure 18(b) and by the time h¯ 3±5 has completely
disappeared. Although this figure does not show them, the second corner eddy now
takes on the role of the first, growing slowly at first and then, near a critical height, very
rapidly until merger leads to the formation of the third primary, and so on. This
establishes, in a certain sense, that as in the two-dimensional case the infinite number
of corner eddies are the progenitors of the primary eddies.

We conclude by presenting some details of the flow in the merged eddy region for
a container of height 3±235, very close to complete merger. Figure 19 shows three sets
of three-dimensional streamline patterns. In (a) we see two closed streamlines that do
not loop the azimuthal core of the eddy. Their upward movement near θ¯π}2 is to
accommodate the streamlines from the primary eddy (not shown) that penetrate this
region from below. The single streamline in figure 19(b) makes swirling closed loops
about the core of the eddy. The upward motion near θ¯π}2 is again to accommodate
the primary eddy. The streamline in figure 19(c) displays what may be called three-
dimensional cat’s eyes. Starting from close to the core near the plane θ¯ 0, a particle
on this streamline would swirl outwards, almost remaining in a plane, then move over
to the other side (near θ¯π) and swirl inwards to the core. Near the core the swirl is
into and along the azimuth until, near θ¯ 0, the swirl is outwards to the starting point.
Taken together (a), (b) and (c) give some idea of the complexity of the motion in the
merged eddy.

There are a number of features of the streamlines seen here, such as foci, limit lines,
‘attractors ’ etc, which are very reminescent of certain features often encountered in
discussions of nonlinear systems. Here, however, the features are seen in physical space
rather than in phase space!

6. Conclusion

An eigenfunction expansion method was presented to compute Stokes flow in a
cylindrical container driven by the motion of one of the endwalls. The method was used
to demonstrate a number of special features of the complex three-dimensional flow
field in the container. These included the structure of the main eddy system, the nature
of the corner eddies in the symmetry plane, the azimuthal flow away from it and finally
the nature of the corner eddy merger leading to the formation of a new primary eddy.

It should perhaps be pointed out that it would be very hard to get as reliable results
for this problem by other methods such as by direct numerical computation. This
would be especially true for the deeper cavities where the field decays rapidly and which
would present severe storage problems. An advantage of the present method is its
speed: computations can be carried out for different depths very rapidly. It was this
feature that was used to advantage in examining the details of corner eddy merger.
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